
ASP.NET Core

Dependency Injection & Unit Testing

Robert Haken

software architect, HAVIT, s.r.o.

haken@havit.cz, @RobertHaken

Microsoft MVP, MCT, MCSD



OCHUTNÁVKA

ASP.NET Core - MVC6 Controller

IEmailSender Dependency Injection demo



Dependency Injection

"Dependency Injection is a set of software design 

principles and patterns that enable us to develop 

loosely coupled code."

Mark Seeman



Dependency Injection Benefits

loosely coupled code =>

• Late-binding

• Extensibility

• Parallel Development

• Maintainability

• Testability



DEMO

Price Resolver - Dependency Injection, Unit-Testing



"Good" Unit Test

• automated + repeatable

• fully isolated

• consistent in its results

• runs quickly

• full control of the unit under test (all dependencies)

• relevant tomorrow

• easy to implement

• able to run it at the push of a button

• if fails => easy to detect what was expected



Dependency Injection Containers

• Object Composition

• Object Lifetime

• Interception

• Code-based / XML-based configuration

– Auto-wiring, convention-based configuration, 

...



ASP.NET Core DI "Container" - Register

• Startup.cs
– Configure[Env]Services(IServiceCollection services)

• API - Lifestyles
– services.AddTransient<TAbstraction, TImplementation>()

– services.AddScoped<TAbstraction, TImplementation>()

– services.AddSingleton<TAbstraction, TImplementation>()

– services.AddSingleton<TAbstraction>(instance)

– plus factory-method verze



ASP.NET Core DI "Container" - Injection

Controllers
– constructor injection

– Action - method injection [FromServices]

Views
– property injection @inject TService PropertyName

Models
– property injection [FromServices]

Startup: Configure()
– method injection



ASP.NET Core DI "Container" - Injection

Middleware
– constructor injection

– method injection Invoke(...)

Filters
– "attribute" injection [ServiceFilter(typeof(...))]

– "attribute" injection [TypeFilter(typeof(...))]

Other
– constructor injection



Q & A


