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"‘Dependency Injection is a set of software design
principles and patterns that enable us to develop
loosely coupled code.”

Mark Seeman
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loosely coupled code =>
« Late-binding

» Extensibility

« Parallel Development
* Maintainability
Testability
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automated + repeatable

fully isolated

consistent in its results

runs quickly

full control of the unit under test (all dependencies)
relevant tomorrow

easy to implement

able to run it at the push of a button

if fails => easy to detect what was expected
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Object Composition
Object Lifetime
Interception

Code-based / XML-based configuration
— Auto-wiring, convention-based configuration,
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« Startup.cs

— Configure[Env]Services(IServiceCollection services)

* API - Lifestyles

services.AddTransient<TAbstraction, TImplementation>()
— services.AddScoped<TAbstraction, TImplementation>()
— services.AddSingleton<TAbstraction, TImplementation>()
— services.AddSingleton<TAbstraction>(instance)

— plus factory-method verze
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Controllers
— constructor injection
— Action - method injection [FromServices]

Views
— property injection @inject TService PropertyName

Models

— property injection [FromServices]

Startup: Configure()
— method injection
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Middleware
— constructor injection
— method injection Invoke(...)

Filters
— "attribute” injection [ServiceFilter(typeof(...))]
— "attribute” injection [TypeFilter(typeof(...))]

Other

— constructor injection
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