- ASP.NET Core
b Dependency Injection & Unit Testing

Robert Haken

software architect, HAVIT, s.r.o.
haken@havit.cz, @RobertHaken
Microsoft MVP, MCT, MCSD




ASP.NET Core - MVC6 Controller
IEmailSender Dependency Injection demo

L OCHUTNAVKA




@ GOPAS

"‘Dependency Injection is a set of software design
principles and patterns that enable us to develop
loosely coupled code.”

Mark Seeman

www.gopas.sk



@ GOPAS

loosely coupled code =>
« Late-binding

» Extensibility

« Parallel Development
* Maintainability
Testability

www.gopas.sk



Price Resolver - Dependency Injection, Unit-Testing

.DEMO




@ GOPAS

automated + repeatable

fully isolated

consistent in its results

runs quickly

full control of the unit under test (all dependencies)
relevant tomorrow

easy to implement

able to run it at the push of a button

if fails => easy to detect what was expected

www.gopas.sk



@ GOPAS

Object Composition
Object Lifetime
Interception

Code-based / XML-based configuration
— Auto-wiring, convention-based configuration,

www.gopas.sk



@ GOPAS

« Startup.cs

— Configure[Env]Services(IServiceCollection services)

* API - Lifestyles

services.AddTransient<TAbstraction, TImplementation>()
— services.AddScoped<TAbstraction, TImplementation>()
— services.AddSingleton<TAbstraction, TImplementation>()
— services.AddSingleton<TAbstraction>(instance)

— plus factory-method verze

www.gopas.sk



@ GOPAS

Controllers
— constructor injection
— Action - method injection [FromServices]

Views
— property injection @inject TService PropertyName

Models

— property injection [FromServices]

Startup: Configure()
— method injection

www.gopas.sk



@ GOPAS

Middleware
— constructor injection
— method injection Invoke(...)

Filters
— "attribute” injection [ServiceFilter(typeof(...))]
— "attribute” injection [TypeFilter(typeof(...))]

Other

— constructor injection

www.gopas.sk






