HAVIT

SOFTWARE DEVELOPMENT

b

Robert Haken

Novinky .NET 10 a vyhled na .NET 11

.NET Timeline

NET 8 NET 9 NET 10 NET M NET 12
° o O ® ®

Latest release

LONG TERM SUPPORT STANDARD TERM SUPPORT

Patches for 3 years Patches for 2 years

C# 14 in .NET 10 - DEMO

e |l extension members

e Partial instance constructors, partial events

e Il Null-conditional assignment using the ?. and ?[] operators
o Il field access in auto-properties (C# 13 preview feature)

e llUnbound generic types in nameof

e Modifiers on simple lambda parameters - no longer require specifying the
parameter type

e User-defined compound assignment operators like += and -=

e User-defined increment (++) and decrement (--) operators

.NET 10 Runtime - JIT (Perf)

e Physical promotion improvements - struct members placed in registers rather than
on stack

e |Improved loop inversion (from lexical analysis to graph-based loop recognition)

e Array interface method devirtualization (eg. foreach (var i in myArray)
transforms to for -loop over the array)

e |nlining improvements (try - catch , devirtualization)

e Stack allocation of small fixed-size "unescaped" arrays (both value and reference
types)

e Escape analysis for local struct fields and delegates

.NET 10 Libraries

e Cryptography enhancements (e.g. PQC = Post-Quantum Cryptography)

e 1sowWeek API extended to support Dateonly (dosud jen DateTime) -
GetWeekOfYear() , GetYear()

e Il Numeric ordering for string comparison ("vie" > "v7", "e2" == "2",..)

var numericStringComparer = StringComparer.Create(CultureInfo.CurrentCulture, CompareOptions.NumericOrdering);

® new TimeSpan.FromMilliseconds overload with single parameter (LINQ expressions
cannot handle optional parameters)

public static TimeSpan FromMilliseconds(long milliseconds, long microseconds); // Second parameter is no longer optional
public static TimeSpan FromMilliseconds(long milliseconds); // New overload

® StringNormalizationExtensions - ReadOnlySpan<char> APIs (dosud jen string)

® Convert.FromHexString() , Convert.TryToHexString() - pretizenis
ReadOnlySpan<byte> pro UTF-8

.NET 10 Libraries

® OrderedDictionary<TKey, TValue> - nova pretizeni TryAdd a TryGetKey s indexy

(out int index)
e JSON: JsonSourceGenerationOptions.ReferenceHandler - reseni pro cycles pfi
pouziti source-gen
e JSON: duplicit. properties - bool JsonSerializerOptions.AllowDuplicateProperties
e I1JSON: 3sonserializerOptions.Strict preset (static property)

e JSON: podpora pro Pipe.Reader pro deserializaci (I/O alternativa k stream),
Pipe.Writer uz podporovano

o 1 ZIP perf + async APIs - zipArchive.CreateAsync() , ZipFile.XyAsync()
® bool ProcessStartInfo.CreateNewProcessGroup()

e new WebSocketStream abstraction over WebSocket

.NET 10 Libraries

e IILINQ: Leftloin() + RightJoin()

e LINQ: shuffle()
® bool IpAddress.IsValid(addr) instead of bool IpAddress.TryParse(addr, out)
e Random.Get[Hex]String() methods

string GetString(ReadOnlySpan<char> choices, int length);
string GetHexString(int stringlLength, bool lowercase = false);
void GetHexString(Span<char> destination, bool lowercase = false);

® GCHandle<T> - like GCHandle , but this time (t's great™™

.NET 10 SDK

e Tools: dotnet tool exec - downloads and runs the specified tool package

© dotnet tool exec dotnetsay "Hello, World!"
e Tools: dnx - tool execution script (currently calls dotnet CLI)
© dnx dotnetsay "Hello, World!"

e File-based apps dotnet [run] singlefile.cs
© #:skd, #:package , #:property, ..

o referencing .csproj project #:project {path}
o publishing to executable (dotnet publish singlefile.cs)
o runtime path data System.AppContext.GetData

o shell-execution support (#!/usr/bin/env dotnet shebang for unix shells)

.NET 10 SDK

e NET tasks usable within .NET Framework MSBuild (VS)

e NuGet: Pruning of framework-provided package references (enabled by default)

e CLI: noun-first form aliases e.g. dotnet package add = dotnet add package (verb-
first form)

ASP.NET Core 10

e OpenAPIl 3.1 + YAML

® bool RedirectHttpResult.IsLocalUrl(url)

e MinimalAPIs Input Validation support

© services.AddValidation()
© endpoint.DisableValidation() - enabled by default
e Treating empty string in [FromForm] as null for nullable value types
e WebAuthN + Passkey authentication support
e 401/403 instead of cookie redirects for unauth API requests ([ApiController], ...)
e return SSE via TypedResults.ServerSentEvents(IAsyncEnumerable<T>)
e HybridCache - feature complete (abstraction only in .NET 9)

e memory management improvements (eviction, pooling, ...)

Blazor in .NET 10

® new <InputHidden /> component
e State persistence for Blazor Server (was PersistentComponentState service)
© [PersistentState] public int MyProperty { get; set; }
© builder.Services.RegisterPersistentService<MyService>(..)
O IPersistentComponentStateSerializer customization (default JSON)
e Circuit state persistence (uses MemoryCache oOr HybridCache)
e & Blazor WebAssembly performance profiling & memory diagnostics &

e Il NavigateTo() no longer scrolls to the top for same-page navigations

Blazor in .NET 10

e Il Support for HTTP Not Found responses
© <Router NotFoundPage="typeof(MyPage)" />

O NavigationManager.NotFound(args) method

O NavigationManager.OnNotFound event

e Il Preload Blazor WebAssembly resources - <ResourcePreloader />

o |l Blazor script as static web asset (compression, fingerprinting)

© «<script src="@Assets[" framework/blazor.web.js"]"></script>

e Fingerprinting support for standalone Blazor WebAssembly apps

® OwningComponentBase nowimplements IAsyncDisposable

Blazor in .NET 10 - Security

e Blazor Web App security samples (OIDC, Entra ID, Windows Authentication) incl.
API project

e Entra auth scaffolding

e Auth cookie expiration in Blazor Server

e Web Authentication API (passkey) support for ASP.NET Core |dentity

Blazor in .NET 10

e Il <DataAnnotationsvalidator /> - nested objects, collections
o services.AddValidation(); - per assembly (source-generation)

o [ValidatableType] to top-level model type

® new <QuickGrid RowClass="GetRowCssClass" /> parameter (selector from TItem)

e Il ReconnectModal - reconnection Ul component in BWA project template (CSP
compliant)

® NavLinkMatch.All now ignores query string and fragment (configurable)
e HttpClient response streaming enabled by default (WASM, configurable)

® new IJSRuntime.InvokeConstructorAsync() and Get/SetValueAsync<TValue>()

Blazor in .NET 10

® <WasmApplicationEnvironmentName> property in .csproj (instead of

launchSettings.json)
® blazor.boot.json inlined into dotnet.js

® <BlazorDisableThrowNavigationException> for Static-SSR (where

NavigationException is thrown)
e Blazor WASM respects DefaultThreadCurrentUICulture

e Blazor metrics, Distributed tracing for Blazor Server

NOT in Blazor 10

e Multithreading

e Full trimming

e NativeAQT for server

e PWA tooling

e Nested routing

e Avoid completely replacing the DOM after prerendering
e Ability to run multiple Blazor apps in the same document
e State transitions for animations

e Hashed routing

NET 11

C#15in .NET 11 ¢ - Type Unions % "»

public record class Dog(string Name);
public record struct Cat(string Adjective);
public record class Bird(string Species);

public union Pet (Dog, Cat, Bird, Shark); // Nominal Type Union
Pet pet = new Dog("Rover"); // implicit conversion

var description = pet switch // exhaustive pattern matching
{
Dog(var name) => name,
Cat(var adjective) => $"A {adjective} cat",
Bird bird => $"A {bird.Species}"
Shark => $"Sharkie"
// No warning about missing cases (fallback case not needed)

};

// ad-hoc unions - similar to tuple types (implemented as Union<T1l, T2, T3,

(Dog or Cat or Bird) pet = new Dog("Alik");
global using Pet = (Dog or Cat or Bird); // global naming

.. >)

C#15in .NET 11 ¢ - Unions

under the hood

public partial

{

}

public

public
public
public

record struct Pet : IUnion
object? Value { get; }
Pet(Dog value) => Value = value;

Pet(Cat value) => Value = value;
Pet(Bird value) => Value = value;

public interface IUnion

{
}

object? Value { get; }

C# 15 in .NET 11

Dictionary expressions

Dictionary<string, int> currentStudents = ["joe" : 1, "jane" : 2, "john"
Dictionary<string, int> newStudents = [.. currentStudents, "mds" : 5];

Optional and named arguments support in Expression trees

extension indexers

collection expr arguments List<string> 1 = [args(capacity: 32); a, b, c];
target-typed interference enhancements

yield inside try / catch

allow using @ = GetDisposable() with discard

2 315

Blazor in .NET 11

e new "Media Component Suite" (from Stream or byte[])

© <Image ImageSource="..." />
© «Video />

O <FileDownload />

® New <EnvironmentBoundary /> component
® [SupplyParameterFromQuery] fixes
® NavigationManager.GetUriWithHash()

e InputFile - correct Dispose pattern implementation

Links

e https.//github.com/hakenr/CSharp14Demo
e What's new in .NET 10 | Microsoft Learn
e What's new in C# 14 | Microsoft Learn

https://github.com/hakenr/CSharp14Demo
https://learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-10/overview
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-14

