

Robert Haken

Novinky .NET 10 a výhled na .NET 11

.NET Timeline

C# 14 in .NET 10 - DEMO
extension members

Partial instance constructors, partial events

Null-conditional assignment using the ?. and ?[] operators

field access in auto-properties (C# 13 preview feature)

Unbound generic types in nameof

Modifiers on simple lambda parameters - no longer require specifying the
parameter type

User-defined compound assignment operators like += and -=

User-defined increment (++) and decrement (--) operators

.NET 10 Runtime - JIT (Perf)
Physical promotion improvements - struct members placed in registers rather than
on stack

Improved loop inversion (from lexical analysis to graph-based loop recognition)
Array interface method devirtualization (eg. foreach (var i in myArray)
transforms to for -loop over the array)

Inlining improvements (try - catch , devirtualization)

Stack allocation of small fixed-size "unescaped" arrays (both value and reference
types)

Escape analysis for local struct fields and delegates

.NET 10 Libraries
Cryptography enhancements (e.g. PQC = Post-Quantum Cryptography)

ISOWeek API extended to support DateOnly (dosud jen DateTime) -
GetWeekOfYear() , GetYear()

Numeric ordering for string comparison ("v10" > "v7" , "02" == "2" , ...)
var numericStringComparer = StringComparer.Create(CultureInfo.CurrentCulture, CompareOptions.NumericOrdering);

new TimeSpan.FromMilliseconds overload with single parameter (LINQ expressions
cannot handle optional parameters)

public static TimeSpan FromMilliseconds(long milliseconds, long microseconds); // Second parameter is no longer optional
public static TimeSpan FromMilliseconds(long milliseconds); // New overload

StringNormalizationExtensions - ReadOnlySpan<char> APIs (dosud jen string)

Convert.FromHexString() , Convert.TryToHexString() - přetížení s
ReadOnlySpan<byte> pro UTF-8

.NET 10 Libraries
OrderedDictionary<TKey, TValue> - nová přetížení TryAdd a TryGetKey s indexy

(out int index)

JSON: JsonSourceGenerationOptions.ReferenceHandler - řešení pro cycles při
použití source-gen

JSON: duplicit. properties - bool JsonSerializerOptions.AllowDuplicateProperties

JSON: JsonSerializerOptions.Strict preset (static property)

JSON: podpora pro Pipe.Reader pro deserializaci (I/O alternativa k Stream),
Pipe.Writer už podporováno

ZIP perf + async APIs - ZipArchive.CreateAsync() , ZipFile.XyAsync()

bool ProcessStartInfo.CreateNewProcessGroup()

new WebSocketStream abstraction over WebSocket

.NET 10 Libraries
LINQ: LeftJoin() + RightJoin()

LINQ: Shuffle()

bool IpAddress.IsValid(addr) instead of bool IpAddress.TryParse(addr, out _)

Random.Get[Hex]String() methods
string GetString(ReadOnlySpan<char> choices, int length);
string GetHexString(int stringLength, bool lowercase = false);
void GetHexString(Span<char> destination, bool lowercase = false);

GCHandle<T> - like GCHandle , but this time it's great

.NET 10 SDK
Tools: dotnet tool exec - downloads and runs the specified tool package

dotnet tool exec dotnetsay "Hello, World!"

Tools: dnx - tool execution script (currently calls dotnet CLI)
dnx dotnetsay "Hello, World!"

File-based apps dotnet [run] singlefile.cs
#:skd , #:package , #:property , ...

referencing .csproj project #:project {path}

publishing to executable (dotnet publish singlefile.cs)

runtime path data System.AppContext.GetData

shell-execution support (#!/usr/bin/env dotnet shebang for unix shells)

.NET 10 SDK
.NET tasks usable within .NET Framework MSBuild (VS)

NuGet: Pruning of framework-provided package references (enabled by default)
CLI: noun-first form aliases e.g. dotnet package add = dotnet add package (verb-
first form)

ASP.NET Core 10
OpenAPI 3.1 + YAML

bool RedirectHttpResult.IsLocalUrl(url)

MinimalAPIs Input Validation support
services.AddValidation()

endpoint.DisableValidation() - enabled by default

Treating empty string in [FromForm] as null for nullable value types

WebAuthN + Passkey authentication support

401/403 instead of cookie redirects for unauth API requests ([ApiController] , ...)

return SSE via TypedResults.ServerSentEvents(IAsyncEnumerable<T>)

HybridCache - feature complete (abstraction only in .NET 9)

memory management improvements (eviction, pooling, ...)

Blazor in .NET 10
new <InputHidden /> component

State persistence for Blazor Server (was PersistentComponentState service)
[PersistentState] public int MyProperty { get; set; }

builder.Services.RegisterPersistentService<MyService>(..)

IPersistentComponentStateSerializer customization (default JSON)

Circuit state persistence (uses MemoryCache or HybridCache)

 Blazor WebAssembly performance profiling & memory diagnostics

NavigateTo() no longer scrolls to the top for same-page navigations

Blazor in .NET 10
Support for HTTP Not Found responses

<Router NotFoundPage="typeof(MyPage)" />

NavigationManager.NotFound(args) method

NavigationManager.OnNotFound event

Preload Blazor WebAssembly resources - <ResourcePreloader />

Blazor script as static web asset (compression, fingerprinting)
<script src="@Assets["_framework/blazor.web.js"]"></script>

Fingerprinting support for standalone Blazor WebAssembly apps
OwningComponentBase now implements IAsyncDisposable

Blazor in .NET 10 - Security
Blazor Web App security samples (OIDC, Entra ID, Windows Authentication) incl.
API project

Entra auth scaffolding
Auth cookie expiration in Blazor Server

Web Authentication API (passkey) support for ASP.NET Core Identity

Blazor in .NET 10
<DataAnnotationsValidator /> - nested objects, collections
services.AddValidation(); - per assembly (source-generation)

[ValidatableType] to top-level model type

new <QuickGrid RowClass="GetRowCssClass" /> parameter (selector from TItem)

ReconnectModal - reconnection UI component in BWA project template (CSP
compliant)
NavLinkMatch.All now ignores query string and fragment (configurable)

HttpClient response streaming enabled by default (WASM, configurable)

new IJSRuntime.InvokeConstructorAsync() and Get/SetValueAsync<TValue>()

Blazor in .NET 10
<WasmApplicationEnvironmentName> property in .csproj (instead of
launchSettings.json)

blazor.boot.json inlined into dotnet.js

<BlazorDisableThrowNavigationException> for Static-SSR (where
NavigationException is thrown)

Blazor WASM respects DefaultThreadCurrentUICulture

Blazor metrics, Distributed tracing for Blazor Server

NOT in Blazor 10
Multithreading

Full trimming

NativeAOT for server
PWA tooling

Nested routing

Avoid completely replacing the DOM after prerendering

Ability to run multiple Blazor apps in the same document
State transitions for animations

Hashed routing

.NET 11

C# 15 in .NET 11 - Type Unions
public record class Dog(string Name);
public record struct Cat(string Adjective);
public record class Bird(string Species);

public union Pet (Dog, Cat, Bird, Shark); // Nominal Type Union

Pet pet = new Dog("Rover"); // implicit conversion

var description = pet switch // exhaustive pattern matching
{

Dog(var name) => name,
Cat(var adjective) => $"A {adjective} cat",
Bird bird => $"A {bird.Species}"
Shark => $"Sharkie"
// No warning about missing cases (fallback case not needed)

};

// ad-hoc unions - similar to tuple types (implemented as Union<T1, T2, T3, ...>)
(Dog or Cat or Bird) pet = new Dog("Alík");
global using Pet = (Dog or Cat or Bird); // global naming

C# 15 in .NET 11 - Unions
under the hood

public partial record struct Pet : IUnion
{

public object? Value { get; }

public Pet(Dog value) => Value = value;
public Pet(Cat value) => Value = value;
public Pet(Bird value) => Value = value;

}

public interface IUnion
{
 object? Value { get; }
}

C# 15 in .NET 11
Dictionary expressions
Dictionary<string, int> currentStudents = ["joe" : 1, "jane" : 2, "john" : 3];
Dictionary<string, int> newStudents = [.. currentStudents, "mds" : 5];

Optional and named arguments support in Expression trees

extension indexers

collection expr arguments List<string> l = [args(capacity: 32); a, b, c];

target-typed interference enhancements

yield inside try / catch

allow using _ = GetDisposable() with discard

Blazor in .NET 11
new "Media Component Suite" (from Stream or byte[])

<Image ImageSource="..." />

<Video />

<FileDownload />

new <EnvironmentBoundary /> component

[SupplyParameterFromQuery] fixes

NavigationManager.GetUriWithHash()

InputFile - correct Dispose pattern implementation

Links
https://github.com/hakenr/CSharp14Demo

What's new in .NET 10 | Microsoft Learn

What's new in C# 14 | Microsoft Learn

https://github.com/hakenr/CSharp14Demo
https://learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-10/overview
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-14

